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Abstract 

 

Despite the extensive empirical literature documenting the determinants of training 
participation and a broad consensus on the influence of previous educational attainment on the 
training participation decision, there is hardly any reference in the applied literature to the role 
of past experience of training on future participation. This paper presents evidence on the 
influence of serial persistence in the work-related training participation decision of British 
employees. Training participation is modelled as a dynamic random effects probit model and 
estimated using three different approaches proposed in the literature for tackling the initial 
conditions problem by Heckman (1981), Wooldrgidge (2005) and Orme (2001). The estimates 
are then compared with those from a dynamic limited probability model using GMM techniques, 
namely the estimators proposed by Arellano and Bond (1991) and Blundell and Bond (1998). 
The results suggest a strong state dependence effect, which is robust across estimation 
methods, rendering previous experience as an important determining factor in employees’ 
work-related training decision.  
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1 Introduction 

 

 

In the last two decades a rather broad consensus as to the role of human capital for the 

determination of productivity and other economic outcomes for the individual has been 

reached.  A substantial number of empirical studies manifest the relationship between 

education and income determination (see, for example, Blundell et al (1996) and productivity at 

the firm-level and human capital (see Black and Lynch ,1996, Dearden et al 2005).   

Although much of the research effort has focussed upon the role of education and educational 

attainment on wages and economic growth, it is generally recognized that training – on-the-job 

or otherwise – has a crucial part to play in the process.  Indeed it may be argued that the role of 

training becomes increasing important as the pace of technological or organisational change in 

the workplace increases.  Knowledge and skills acquired in formal education or from previous 

training episodes rapidly depreciate and become outmoded in this type of environment, 

requiring workers to engage continually in an ongoing process of skills acquisition.   

Although an extensive literature has developed in relation to training, most studies have been 

concerned with the evaluation of government sponsored training schemes and the role of 

formal educational attainment for employment outcomes (for a non-technical review of this 

literature see, for example, de la Fuente and Ciccone, 2003).  Work-related training, by 

comparison, has attracted considerably less attention with the evidence advanced by the early 

literature for the determinants of training being well-documented by Blundell et al (1996) and 

the OECD (2003). 

The conventional wisdom for the UK suggests that the probability of participating in work-

related training is higher among individuals with a record of prior educational attainment, men 

rather than women, non-minority groups and younger workers; see, for example, Blundell et al 
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(1996) and references therein.  Work-related training is also influenced by job/employer 

characteristics such as employment status (full- and part-time/contract work) firm size and 

industrial classification (workers in industries that are growing or experiencing rapid 

technological change receive more work-related training, on average), the sector of employment 

(public/private) and the presence (coverage) of trade unions in the workplace (Boheim and 

Booth, 2004, for example, report a positive impact for unions on training in Great Britain). In 

terms of outcome, training has been associated with a positive wage effect with consistently 

higher returns for those who train (Blundell et al 1999), and improvements in firm-level 

productivity and competitiveness; see inter alia Black and Lynch (1996), Blundell et al (1999) 

and Dearden et al (2005).  

Although presented as the conventional wisdom it must be acknowledged that doubt remains 

around many of these effects. Green and Zanchi (1997) report that participation in training was 

equalised between men and women in Britain during the 1990s. Additionally, recent evidence 

seems to suggest that there has been a change in work-related participation rates among 

genders, with women exhibiting higher propensities to train (Jones et al, 2008). This finding is 

not an exclusive feature of a single labour market and is indeed supported by evidence from a 

number of OECD member countries (see Jones et al, 2008 and the references therein). Jones et 

al (2008) also report a number of reasons suggested in the literature for this empirical 

observation, which vary from wider societal and institutional changes improving the relative 

role of women in the labour market, an increased training demand and supply to accommodate 

returning mothers and/or carers, technological changes promoting more desktop-based tasks, 

which appear to attract more female workers, to women possessing ‘better’ educational profiles 

and (young) age advantages hence both attracting and investing in more training. In a similar 

manner, when examining the determinants of training among Australian workers, Almeida-

Santos and Mumford (2004) do not find strong evidence of a positive link between unions and 

training in their sample.  Research in the area is ongoing. 
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However, despite the extensive nature of the literature there appears to have been little 

discussion of the possibility of state dependence in the determination of training1.  In many 

respects this is surprising.  The link between training and prior formal educational attainment 

identified elsewhere in the literature suggests that training builds upon previously acquired 

skills and knowledge; if formal education and training are both part of the skills acquisition 

process the natural presumption would be that previous training experience is also a 

determinant of subsequent training.  Equally, work-related training is an investment – for the 

individual and for the firm, if there are costs of adjustment associated with training we might 

expect to see training and skill acquisition spread over time.  Finally, all of the available 

evidence suggests that training is a process whereby workers’ depreciating skills are updated 

and enhanced.  But with “training opportunities” unevenly distributed across the workforce 

prior experience of training provides an additional factor that effectively discriminates between 

workers further. 

 

In the existing literature these issues are invariably addressed in the context of a static 

framework that may extend across several years and which may involve multiple training 

episodes.  In this study an alternative approach is adopted to investigate whether previous 

experience of training is itself an important determinant of future training participation 

alongside the usual explanatory variables that reflect individual and workplace characteristics.   

Naturally, once one allows an individual’s current training-incidence to depend upon previous 

training experience, a number of additional econometric problems are introduced into the 

analysis.  These issues most notably relate to the potentially non-trivial problem associated with 

the treatment of initial conditions in the data and of how to deal with unobserved heterogeneity.  

In the current paper these issues are addressed in a number of ways and estimates from a range 

of alternative estimators are presented. 

                                                           
1
 Indeed the OECD (2003) review of the subject contains no mention of persistence effects whatsoever. 
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The remaining of the paper is organised as follows. The first part estimates a model of work-

related training participation for British employees using individual level data covering the 

period 1991-1997 from the British Household Panel Survey using three different approaches in 

estimating a random effects dynamic panel data model, under the probit assumption on the 

distribution of the errors, attributed to Heckman (1981), Wooldridge (2005) and Orme (2001). 

The results are compared with the rather naïve approach of treating the initial conditions as 

exogenous. In the second part, generalised method of moments (GMM) estimators are applied in 

the context of a dynamic linear probability model. GMM estimators do not require distributional 

assumption for the unobserved effect and have thus become popular particularly in cases where 

the panel consists of a few time periods.  The results obtained are similar across estimators 

suggesting the robustness of strong state dependence effects in the work-related training 

participation decision. 

2 Dynamic Random Effects Probit Models 

 

This section considers three estimators for the dynamic random effects probit model which 

allows for state dependence and unobserved heterogeneity. The treatment of initial conditions 

is crucial in such models since misspecification will result in an inflated parameter of the lagged 

dependent variable term which measures the magnitude of past experience. Furthermore, 

possible unobserved heterogeneity could also overstate the effect of state dependence in work-

related training if unaccounted for. 

 

In modelling state dependence in the incidence of work-related training among British 

employees, the analysis begins with the specification of a general dynamic unobserved effects 

model for a random draw  from the population and for  (with  being the 

maximum number of periods of observation for individual ) of the form 
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   (1) 

 

where  is a vector of strictly exogenous explanatory variables conditional on the unobserved 

effect, ,  is a parameter vector associated with , the coefficient of the lagged dependent 

variable term, , captures the effect of state dependence and  is the standard normal 

cumulative distribution function. Under this formulation, the response probability of a positive 

outcome depends on the unobserved effect and past (one period) experience. It is further 

assumed that the dynamics are correctly specified i.e. one period lag is sufficient to allow the 

conditioning set to include all relevant past information. Testing the hypothesis of a non zero  

is equivalent to testing the presence of true state dependence, having controlled for the 

unobserved heterogeneity. The above model can also be expressed as 

 

 

 

  (2) 

 

Since the time series  is short relative to the cross section  size (or with fixed-T 

asymptotics as is also referred to in econometrics parlance), a consistent log-likelihood function 

cannot be derived from this density (Wooldridge, 2002). The unobserved effect needs to be 

integrated out before estimation can progress. The need to integrate out the unobserved effect 

evokes the question of how the initial observation is to be treated.  

 

A dynamic reduced form model of work-related training participation is specified as 

 

      (3) 
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where , a binary outcome variable, denotes participation in some form of work-related 

training  in the current period,  is a vector of explanatory variables,  is a vector of 

coefficients associated with  and   

 

In equation (3), the errors, , are assumed independently and identically distributed. However, 

if we assume that the unobservable individual-specific heterogeneity is time invariant, the error 

term can be decomposed to, , where  is the individual-specific unobserved effect 

assumed  and independent of  (for likelihood marginalisation) where  is a 

random error assumed  and independent of the elements of 2.  

 

Estimating a standard uncorrelated random effects model also implicitly assumes zero 

correlation between the unobserved effect and the set of explanatory variables. However, this 

assumption is most likely not to hold in this context. Consider that the unobserved effect 

captures an individual’s motivation. In this case it is reasonable to expect it to be correlated 

with at least some of the elements of the set of explanatory variables, for example the 

educational qualifications variable. The assumption of no correlation between  and  is 

relaxed following Mundlak (1978) and Chamberlain’s (1984) suggestion that the regression 

function of  is linear in the means of all the time varying covariates and it can therefore be 

written as,  

 

 

 

where  and independent of  and  for all and ,  refers to the vector of means 

of the time-varying covariates for individual  over time. Hence, model (3) can be rewritten as 

(the constant has been absorbed into ) 

 

                                                           
2  refers to Independent Normal distribution.  
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       (4) 

 

This formulation implies that,  for .  

 

A further assumption about the relationship of the initial observations, ,  and the unobserved 

effect is needed for consistent estimation of (4). If the initial conditions are assumed exogenous, 

the likelihood decomposes and any standard random effects probit program can be used. 

However, if the initial conditions are correlated with the unobserved effect, as would be 

expected in the current context, this method will overestimate the effect of state dependence.  

2.1 Heckman’s estimator 

 

The approach proposed by Heckman (1981) involves the specification of a reduced form 

equation for the initial conditions of the form 

 

 

 

The vector  includes all variables relevant to period zero in addition to some exogenous pre-

sample variables and the vector of means, ,  and . To account for a 

possible non-zero , the error  is decomposed to  with  and it is further 

assumed that  satisfies the same distributional assumptions as  for . The period zero 

linear reduced form equation is then,  

 

 

 

Under the normalisation , the joint probability for individual  given the unobserved 

time-invariant effect , is 
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For a random sample, the likelihood function is thus 

 

 

 

where  is the distribution function of  and  due to the normalisation 

used, where  is defined as above. If it is further assumed that the unobserved effect is normally 

distributed, the integral over  can be evaluated using Gauss-Hermite quadrature (Stewart, 

2006).  

 

2.2 Wooldridge’s Conditional ML estimator 

 

Wooldridge (2005) proposes a conditional maximum likelihood estimator that considers the 

distribution conditional on the initial period observations and exogenous covariates. In effect, 

Wooldridge suggests modelling the joint distribution of  conditional on  

instead of the joint distribution of  conditional on . The advantage of the resulting 

estimator is that it may be implemented using standard econometric software and is 

computationally inexpensive in contrast to the Heckman estimator which requires special 

software to be written.  

 

Instead of specifying a model for the initial conditions given observed covariates and the 

unobserved effect, a model is specified for the unobserved effect given observed covariates and 

the initial conditions. First assume that 
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Substituting into (4) gives 

 

 

 

where the Mundlak specification has been incorporated. Wooldridge further suggests that one 

may allow for a more flexible conditional mean in the analysis by including various interactions 

of the initial period observations with the means of the time-varying covariates.  

 

2.3 Orme’s estimator 

 

Orme (2001) proposes a two step estimator for the dynamic random effects model. It is an 

approximation for small values of  and follows from Heckman’s standard sample selection 

correction method. He proposes to incorporate a correction term in the conditional model to 

account for the correlation between the unobserved heterogeneity and the initial observations. 

 

In Orme’s (2001) estimator, a reduced form equation for the initial observation as in Heckman’s 

procedure needs also be specified. The specification for a non-zero  (in terms of orthogonal 

error components) is different to the Heckman case though and has the form 

 

 

 

in which, by construction, ,  and . If we then substitute 

to model (4), we get  

 



11 
 

 

 

Orme argues that if  follow a bivariate normal distribution,  but   

 where by construction, 

 

 

 

Assuming that  is orthogonal to the regressors, if  is replaced by the conditional expectation 

, will be the random component in a standard random effects probit model of the form 

 

 

 

estimable by standard econometric software. Orme (2001) argues that the estimator despite 

being local to zero performs well for ‘large’ values of  as well.  

3 The data 

 

Data from the first seven waves of the British Household Panel Survey (BHPS hereafter), a 

longitudinal survey of randomly selected households in Great Britain, is used. The interviews for 

the first wave of the BHPS were conducted between September and December 1991 and 

annually thereafter3. The sample comprises an unbalanced panel and includes men and women 

of working age who are present and in employment as employees in the first wave (1991) but 

who may subsequently drop out of the sample as a result of missing information, attrition or 

                                                           
3 For more details see Taylor, M.F et al (2006). 
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having moved out of scope4.  Thus the sample excludes self-employed individuals, the 

unemployed, those in full time education and members of the armed forces5.    

Over the sample period, the BHPS contains two variables that relate to an individual’s 

participation in training during the twelve months prior to the interview date. The first of these 

variables records the incidence of formal on-the-job training undertaken as part of the 

individual’s present employment6 whilst the second question records any other education or 

training that was undertaken that enhances skills for current or future employment. The 

training referred to in this latter respect is, at least potentially, work-related, excluding any 

education or training undertaken as a pastime, hobby or solely for general interest. In the 

current analysis we combine responses from both questions in our definition of work-related 

training7.  

In modelling work-related training participation I include a set of variables that reflect 

individual characteristics such as age, indicators of prior educational attainment, race, and 

occupation, employment and employer characteristics such as job permanency, part-time, full-

time status, hierarchical position within the firm, trade union presence and firm size together 

with an indicator of training history.  In addition, a set of variables recording past information, 

including the socio-economic and personal characteristics of the respondent’s father and pre-

sample information on the respondent, is utilised in the estimation of the reduced-form 

equation for the initial conditions for the Orme and Heckman estimators.   

4 Random effects probit estimates 

 

                                                           
4 Individuals were not allowed to enter or re-enter the sample after the first wave. 
5 The estimation was carried out for a balanced sample as well (individuals for whom complete BHPS histories are 
available) with the main findings reported here remaining unaltered. 

6 In Wave One, only the employed were asked this. At Wave Two, this was extended to all currently working. The 
scope of the question was widened to include education or training courses. 
7
 The relevant questions in the 1991 BHPS are D23 and E17.  
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Estimates of the random effects probit model for the probability of work-related training 

participation using the Heckman, Wooldridge and Orme estimators are given in Table 1 columns 

2, 3 and 4 respectively. The vector of regressors includes the listed variables plus regional and 

year dummies. The models also contain means over time for each time-varying variable 

(following Mundlak’s suggestion as specified above). The corresponding pooled probit model 

(without random effects) estimated on the same sample is given in the first column for 

comparison. 

 

The dynamic random effects probit model and the pooled probit model involve different 

normalisations (Arulampalam, 1998). The random effects probit estimates are normalised on 

, while the pooled probit estimates are normalised on . Thus random effects probit 

models provide an estimate of  while pooled probit models an estimate of . For 

comparison, the former model needs to be multiplied by an estimate of . Table 1 

presents scaled coefficient estimates.  

 

Exogeneity of the initial conditions in the random effects model can be tested by a simple 

significance test under the null of   for the Heckman estimator and by   and  

for the Wooldridge and Orme estimators respectively. It is clear the exogeneity hypothesis is 

strongly rejected in these models.  

 

The coefficient of the lagged dependent variable is positive and highly significant indicating 

strong persistence effects in the incidence of work-related training. Assuming the initial 

conditions as exogenous overstates the effect of state dependence as is obvious from the rather 

inflated coefficient of the pooled probit model (without random effects). In contrast, the 

magnitude of the coefficient is almost halved for the rest of the estimators employed.  
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For the Heckman estimator, parental variables and pre-sample variables related to educational 

characteristics are used as instruments. Specifically, dummy variables for father’s broad socio-

economic class, when the respondent was aged 14 together with indicator variables for the 

father being in a managerial profession or not as well as for father being in gainful employment 

as opposed to being deceased are used in addition to a variable recording whether the 

respondent attended a public school or otherwise. This set of variables is also included in the 

first period probit model of the Orme estimator.  

 

[table 1 here] 

 

Table 1 provides estimates of the predicted probabilities together with the average partial 

effects (APE), , and the predicted probability ratios (PPR), . The partial effect of 

 on the  is calculated based on the calculation of a counter-factual outcome 

probability assuming fixed at the two alternate states evaluated at   following 

Stewart (2006), 

 

 

 

and 

 

 

 

All three estimators provide strong support to the proposition of serial dependence in the 

incident of work-related training. The effects of the rest of the covariates are in line with the 

findings of other studies in the literature. When the initial conditions are assumed exogenous, 
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the random effects variance is restricted to zero, implying that there is no unobserved 

heterogeneity in participation probabilities and all observed serial persistence is due to  and .  

The estimate of state dependence in this case is substantial . However, this estimate 

will overstate state dependence if the unobserved individual specific effect influences the 

sample initial conditions. Columns 2, 3 and 4 of Table 1 present estimates of models allowing for 

a endogenous initial conditions by approximating  with a flexible reduced form equation. The 

results change substantially and the state dependence estimate is less than halved . 

The estimate of  implies that approximately 20% of the total error variance is 

attributable to unobserved heterogeneity.  

 

The choice between estimators is usually based on relative performance and ease of 

implementation. The three estimators for the dynamic random effects probit model considered 

here produce very similar results suggesting that none dominates the others. The estimators 

proposed by Wooldridge and Orme are easier to implement with standard software compared 

to Heckman’s approach. However, Stewart (2005) suggests a routine for implementing the 

Heckman estimator with standard software alleviating any problems of special software 

development. This places all three estimators on an equal footing and reduces the choice to a 

matter of preference between the different approximations for the treatment of the initial 

observations.  

5 GMM estimation of a DLP model of training. 

 

The dynamic random effects probit models considered so far necessitate an auxiliary 

distributional assumption on the individual-specific unobserved effect. In this section, 

Generalised Method of Moments (GMM) estimators (Hansen, 1982), in the context of a dynamic 

linear probability (DLP) model that does not require such assumptions, are considered. Such 



16 
 

estimators have been labelled semi-parametric since they are non-parametric for the 

unobserved individual-specific effects.  

 

In non-linear panel data models where  but  is small or fixed, maximum likelihood 

estimation relies on some very restrictive assumptions about the distribution of the error term 

and can be computationally burdensome - controlling for potential serial correlation in the 

error terms, involves -dimensional numerical integration, which for panels with   may 

not be feasible, subject to the choice of probability density function (Breitung and Lechner, 

1995).  

 

GMM techniques are widely applied to the estimation of dynamic linear panel data models 

(Avery, Hansen and Hotz, 1983, Holtz-Eakin et al, 1989, Arellano and Bond, 1991). The GMM 

estimators have been proven popular since they do not require the analyst to explicitly specify 

the covariance structure of the errors and are considerably less demanding in terms of 

computational effort. Here I apply GMM estimators proposed in the literature, which utilise 

instruments originating within the dataset, to a dynamic LPM for participation in work-related 

training. 

 

In the linear probability model (LPM), unless the range of the regressors set, , is severely 

restricted, the estimates will not provide an adequate description of the underlying population 

response probability since for some values of the explanatory variables the fitted values will fall 

outside the unit interval. More, the linear probability model implies that the response 

probability will always change by the same amount following a unit increase in any one 

covariate, , ceteris paribus, regardless of the initial values of the covariate. This is clearly 

counterintuitive since it implies that the probability could eventually increase beyond one or 

decrease below zero following enough changes in . The LPM is therefore best considered as an 

approximation of the population response probability.  
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Conveniently though, the linear probability model approximates the response probability for 

common values of the covariates. In addition, it appears to provide ‘good’ estimates of the 

partial effects on the outcome probability near the centre of the distribution of . The ‘goodness’ 

of these estimates is usually assessed via a comparison with the estimates from nonlinear 

estimation techniques such as probit and/or logistic regressions. If interest lies with the partial 

effect of a covariate on the response probability averaged across , then the predicted values 

that lie outside the unit interval may diminish in importance and thus the LPM may indeed 

provide ‘good’ estimates.  

6 The empirical model 

 

The general model of the data-generating process is specified as 

 

         ,   and   (5) 

 

where  with , ,  and .  

 

Differencing removes the individual-specific unobserved effects and the model can be written as 

 

 

,  and .  (6) 

 

The problem with applying OLS to (5) is that  is endogenous to the fixed effects in the error 

term, resulting in biased estimates. The first differenced transformation proposed in the 

literature (model 6) does not overcome this problem either. Even if  are serially independent, 

 and  will be correlated since the term in correlates with 
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. Similarly, any predetermined regressors (not strictly exogenous) could be 

rendered endogenous due to their potential relation to  (Roodman, 2006).  

 

The first-difference transformation has a further drawback in the sense that it exacerbates the 

problem of non-response in unbalanced panels. If  is missing, then  and/or any 

, , cannot be defined and will also be missing.  

 

Arellano and Bover (1995) propose to overcome this potential source of difficulty by 

subtracting the average of all future observations from the current observation instead of 

subtracting the previous observation from the current one. That way a ‘differenced’ value can 

almost always be obtained and given that lagged observations are not used to transform the 

variables as in the first-differenced case, they can serve as instruments. For variable  the 

transformation formula is hence 

 

 

    (7) 

 

where  is all future available observations and  is a scale factor.  This 

transformation, also referred to as “(forward) orthogonal deviations”, allows the  to retain 

their properties i.e. if  are independently distributed,  will be too. The choice of scale factor 

also assures that if  is identically in addition to independently distributed,  will again retain 

the property. This is not achieved through differencing since the transformation induces 

correlation between successive error terms even if there is no correlation in the levels. This can 

be seen by the mathematical relationship of  to  through 

the common  term (Roodman, 2006).  
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7 Applying GMM 

7.1 Arellano-Bond (1991) estimator 

 

Optimal GMM requires first, the estimation of the covariance matrix of the transformed errors, 

, which hinges on the assumption that  are i.i.d. Secondly,  is proxied by the robust 

estimates of  

 

     (8) 

 

The block-diagonal matrix  allows for arbitrary patterns of covariance within individuals but 

not across them. The inclusion of time dummies in the estimation removes any time shocks 

from the errors and is therefore advised. As long as the  are derived from a consistent estimate 

of , a GMM estimator derived from them will be asymptotically efficient (Arellano, 2003).  

 

The resulting estimator is known as the classic Arellano-Bond (1991) difference GMM estimator 

for dynamic panels. This estimator is more efficient than the Anderson-Hsiao estimator, which 

instruments  with either  or . As noted, before, the consistency of all these 

estimators hinges on  being serially uncorrelated.  

 

7.2 Blundell-Bond (1998) estimator 

 

Arellano and Bond (1991) carry out simulation analysis for the performance of the one and two 

step difference GMM estimator and find that the latter outperforms the OLS, within groups and 

Anderson-Hsiao, both in differences and levels, estimators. Blundell and Bond (1998) also 
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conduct Monte Carlo simulations to assess the performance of the different GMM estimators. 

They find that the performance of the difference GMM is limited when the autoregressive 

process is (or is close to be) a random walk. The authors argue this to be due to the potentially 

limited explanatory power of past level states on future changes.  

 

Blundell and Bond (1998) propose a different approach, which involves the construction of an 

additional set of instruments. Instead of transforming the set of regressors to rid them of the 

fixed effects, they propose to apply the differencing transformation to the set of instruments 

thus making them exogenous to the fixed effects.  This is valid under the assumption that 

changes in any instrumenting variable  are not correlated with the fixed effects i.e. 

 for all  and . Another way of putting this is to say that  is constant over 

time (Roodman, 2006).  

 

If this holds true then  could act as a valid instrument for the variables in levels since 

 

 

 

The rationale behind the Blundell and Bond (1998) estimator is to instrument levels with 

differences whereas the Arellano and Bond (1991) estimator instruments differences with 

levels. If the process resembles a random walk, previous changes may be more informative of 

current (or future) states than previous states would be of current (or future) changes.  

 

As noted earlier, the Blundell-Bond estimator requires one additional assumption, 

 for all  and , which is in effect a stationarity assumption. If  acts as an instrument for 

 and since both  and  contain , the proposition that the instrument is orthogonal 

to the error, , is not straightforward. Blundell and Bond suggest that it is 

possible if the data generating process is of a form that allows the fixed effects and the 
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autoregressive process (as determined by the coefficient on the lagged dependent variable) to 

offset each other in expectation (Roodman, 2006, p.29).  

 

Blundell and Bond (1998) propose the following procedure. The first step involves the creation 

of a ‘new’ dataset. Apply the chosen (differences or orthogonal deviations) transformation to the 

data. Then, combine the transformed and levels observations into one dataset. Setting up the 

data in this way does not cause any confusion to the applied estimation techniques since both 

the transformed and levels data are characterised by the same linear functional form.  

 

The second stage involves the construction of the instruments. This is done in a fashion similar 

to the data format. The appropriately strictly exogenous variable acting as an instrument is 

transformed (through differencing) and a column vector of instruments is created by again 

combining the transformed and untransformed observations and imposing the moment 

condition , where  is the instrument and  the empirical errors and  

and  denote transformed quantities.  

 

Next, the Arellano-Bond instruments i.e. instruments in levels, are set to zero for levels 

observations and the transformed instruments are set to zero for the transformed observations. 

This results in a GMM-style instrument matrix, which could potentially include a full set of 

differenced instruments for the levels equation using all available lags. However, most of these 

would not result in further efficiency gains since they would be mathematically redundant as 

Roodman (2006, p.31) shows.  

 

The estimator proposed by Blundell and Bond (1998) is also referred to as system-GMM since it 

combines observations and instruments both transformed and in levels.  
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8 GMM estimates 

 

As already mentioned the random effects probit estimators are potentially sensitive to the 

auxiliary distributional assumption of the individual-specific unobserved effect. Further 

investigation of this issue could be provided by GMM estimates of a DLP model as described in 

the previous sections. The random effects formulation provides efficiency gains if the auxiliary 

distributional assumption is not violated (Stewart, 2005). GMM estimators of the fixed effects 

model are efficiency-wise inferior, however, do not require an assumptions about the 

distribution of the unobserved heterogeneity. A comparison of the two sets of results provides a 

way of assessing the validity of the auxiliary distributional assumption, namely that of normality 

in this case.  

 

Table 2 presents estimates of the DLP model using different estimators and OLS estimates for 

comparison. Columns 2 and 3 present the Arellano-Bond optimal-GMM and Blundell-Bond 

system-GMM estimators respectively using only lagged training participation variables as GMM-

style instruments. For the Arellano-Bond estimator, the one-step estimates are presented 

following the recommendation of Doornik, Arellano and Bond (1999). The two-step estimates 

and their (corrected) standard errors are very similar to the one-step estimates.  

 

Column 1 of Table 2 presents OLS estimates of the DLP model comparable to column 1 of Table 

1. The lagged training coefficient from the OLS regression (0.305) is not much different to the 

APE for the pooled probit estimator (0.267). The estimated coefficients for the dynamic training 

term are not large, easing any weak-instrument concerns. The models pass the Arellano-Bond 

second order autocorrelation test and the Hansen and Sargan tests of over-identifying 

restrictions.  

 

[table 2 here] 
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8.1 Testing for autocorrelation 

 

Testing the validity of the instruments (moment conditions) employed in the estimation of 

dynamic panel data models is done by means of the GMM test of overidentifying restrictions 

commonly associated with Sargan (1958) and Hansen (1982)8. The Sargan test of 

overidentifying restrictions essentially involves regressing the residuals obtained from the IV 

regression on all exogenous variables (instruments and controls) and recording the coefficient 

of determination. The test statistic is constructed as , where  is the number of 

observations. Under the null hypothesis that all instruments are exogenous, the test statistic  is 

 distributed with degrees of freedom equal to , where  is the number of 

instruments minus the number of endogenous variables respectively.  

 

Arellano and Bond (1991) consider the case when the idiosyncratic error term  suffers from 

autocorrelation. If  are serially correlated of order one, then  is endogenous to  in 

the differenced error term, , and hence invalid as instrument. The composite 

error, , will of course be correlated via the unobserved effect but the estimators are designed 

to account for such autocorrelation. If order one serial correlation is proven, then lags of order 

three and higher can only be used. If higher order serial correlation is present, then even higher 

order lags need be utilised. The problem this causes is obvious and it may even prove 

impossible to overcome in very short panels.  

 

Testing for first-order serial correlation in the levels involves checking for second-order serial 

correlation in differences since this is expected to unveil correlation between  in  and 

 in . First order serial correlation is expected in differences since  shares term 

 with  and thus finding evidence of that provides no new information. Consequently, 

                                                           
8 For a description of the test procedure in the dynamic panel data model see Arellano and Bond (1991). 
Altonji and Segal (1996) find that the Sargan test has poor size properties for panels with large  and 
small/fixed . 
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the general approach for testing the presence of serial correlation of order  in levels, is to look 

for serial correlation of order  in differences. If the data transformation was in orthogonal 

deviations, the test of autocorrelation in the idiosyncratic error  should still be carried out in 

differences since all residuals in deviations are mathematically interrelated. The Arellano-Bond 

test of autocorrelation is applicable to any GMM regression on panel data provided none of the 

regressors depend on future errors and the errors are not correlated across individuals 

(Roodman, 2006).  

9 Conclusion 

 

This paper presents evidence on the influence of serial persistence in the work-related training 

participation decision of British employees. Training participation is modelled as a dynamic 

random effects probit model and estimated using different approaches proposed in the 

literature for the initial conditions problem by Heckman (1981), Wooldrgidge (2005) and Orme 

(2001). The estimates are then compared with those from a dynamic limited probability model 

using GMM techniques, namely the estimators proposed by Arellano and Bond (1991) and 

Blundell and Bond (1998). The results suggest a strong state dependence effect, which is robust 

across estimation methods, rendering previous experience as an important determining factor 

in employees’ work-related training decision.  
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Table 1 Random Effects Probit Models for Training Probability†. 

 Pooled Probit Heckman 
Estimator 

Wooldridge 
Estimator 

Orme 
Estimator 

 
Variable Name 

[1] [2] [3] [4] 

Lagged dependent variable     
Trained t-1 0.848 (35.7) 0.415 (12.8) 0.447 (15.5) 0.431 (14.1) 
     
Personal characteristics     
Sex (Female) 0.063 (2.24) 0.068 (1.71) 0.075 (2.22) 0.041 (1.14) 
Age 0.000 (0.09) -0.009 (0.77) -0.001 (0.16) -0.001 (0.13) 
Age 2 0.000 (0.83) 0.000 (0.00) 0.000 (0.62) 0.000 (0.77) 
Race (white) 0.112 (1.57) 0.165 (1.53) 0.123 (1.40) 0.173 (1.81) 
Marital Status (single) -0.051 (1.75) -0.065 (1.65) -0.047 (1.42) -0.060 (1.67) 
     
Social class     
Professional occupation 0.222 (2.37) 0.294 (2.50) 0.191 (1.87) 0.241 (2.19) 
Managerial & Technical 
occupation 

0.311 (3.78) 0.377 (3.60) 0.279 (3.11) 0.304 (3.12) 

Skilled non-manual occupation 0.225 (2.83) 0.344 (3.39) 0.211 (2.42) 0.231 (2.45) 
Skilled manual occupation 0.146 (1.79) 0.244 (2.36) 0.159 (1.79) 0.143 (1.50) 
Partly skilled occupation 0.012 (0.15) 0.111 (1.08) 0.012 (0.14) -0.004 (0.05) 
     
Highest Educational 
Qualification 

    

Higher degree 0.293 (3.48) 0.381 (3.15) 0.324 (3.18) 0.354 (3.23) 
First degree 0.499 (9.13) 0.635 (8.13) 0.547 (8.22) 0.623 (8.64) 
Teaching qf. 0.700 (8.67) 0.876 (7.69) 0.729 (7.55) 0.850 (8.18) 
Other higher qf. 0.483 (10.9) 0.602 (9.52) 0.523 (9.82) 0.603 (10.3) 
Nursing qf 0.233 (2.56) 0.494 (3.91) 0.287 (2.67) 0.473 (3.96) 
GCE A levels 0.253 (5.21) 0.294 (4.22) 0.271 (4.63) 0.346 (5.41) 
GCE O levels or equivalent 0.154 (3.66) 0.178 (2.97) 0.168 (3.32) 0.210 (3.78) 
Commercial qf / No O levels 0.085 (1.13) 0.058 (0.57) 0.105 (1.15) 0.165 (1.68) 
CSE Grade 2-5 / Scottish Grd  0.015 (0.22) 0.014 (0.15) 0.026 (0.33) 0.034 (0.39) 
Apprentiship 0.174 (1.66) 0.181 (1.17) 0.149 (1.18) 0.181 (1.33) 
Other qualifications -0.378 (2.14) -0.474 (1.81) -0.401 (1.98) -0.378 (1.76) 
     
Characteristics of current 
job/employer 

    

Private Sector -0.166 (3.77) -0.159 (2.84) -0.183 (3.75) -0.175 (3.33) 
Permanent position 0.167 (2.75) 0.118 (1.53) 0.188 (3.00) 0.201 (2.94) 
Working Part Time -0.198 (5.73) -0.249 (5.50) -0.214 (5.54) -0.216 (5.13) 
Trade union coverage in the 
workplace 

0.152 (5.41) 0.178 (4.89) 0.141 (4.44) 0.172 (5.05) 

Managerial position 0.125 (3.42) 0.109 (2.44) 0.123 (3.10) 0.110 (2.61) 
Supervisor/foreman 0.115 93.58) 0.103 (2.72) 0.104 (3.08) 0.105 (2.90) 
Size of employing organization 
(manpower) 

    

More than 25 / 50 to 99 (small) 0.035 (0.99) 0.056 (1.30) 0.040 (1.05) 0.041 (1.01) 
100 to 499 (medium) 0.071 (2.39) 0.089 (2.38) 0.075 (2.28) 0.088 (2.50) 
500 or more (large) 0.152 (4.45) 0.139 (3.24) 0.148 (3.90) 0.136 (3.35) 
     
Auxiliary parameters     
Intercept -1.800 (5.19) -1.032 (0.01) -1.485 (4.18) -1.321 (3.41) 

  0.961 (8.19)   
   0.340 (10.7)  
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    0.248 (10.4) 
     

   0.509 (20.3) 0.517 (19.4) 
  0.243 (12.5) 0.206 (12.8) 0.210 (12.3) 

Log likelihood -8140.29 -7315.48 -8001.49 -6946.68 
     
NT 14647 18270 14647 12645 
N 2441 3045 2768 2373 
     
Pred. Prob.  0.415 0.421 0.417 0.423 
Pred. Prob.  0.682 0.563 0.565 0.566 
APE:  0.267 0.142 0.148 0.143 
PPR:  1.64 1.33 1.35 1.33 
     
Notes: 
1. All models contain dummy variables for region and industrial classification. 
2. All models contain yearly dummies and means of time-varying covariates. 
3. t-ratios in parentheses.  
4. ,  = predicted proabbilitties of training participation at given non-participation  and participation 
at time  respectively. 
5. APE = Average Partial Effect, PPR = Predicted Probability Ratio 
† Estimation was carried out in stata© 10.2. 
 

 

Tables 2 GMM estimates 

       
 
Variable Name 

OLS 
 

[1] 

Arellano-Bond  
(One-step diff.) 

[2] 

Blundell-Bond  
(system-GMM) 

[3] 
Lagged dependent variable       
Trained t-1 0.3059 (39.0) 0.1516 (10.1) 0.1323 (7.32) 
       
Personal characteristics       
Sex (Female) 0.0209 (2.34)   0.0214 (1.81) 
Age -0.0011 (0.40) 1.0042 (22.7) -0.0020 (0.57) 
Age 2 0.0000 (0.54) 0.0000 (0.36) 0.0000 (0.35) 
Race (white) 0.0323 (1.45)   0.0417 (1.45) 
Marital Status (single) -0.0159 (1.73) -0.0252 (0.84) -0.0197 (1.71) 
       
Social class       
Professional occupation 0.0663 (2.32) -0.0771 (1.19) 0.0929 (2.73) 
Managerial & Technical 
occupation 0.0945 (3.86) -0.0036 (0.06) 0.1211 (4.24) 
Skilled non-manual 
occupation 0.0641 (2.75) 0.0118 (0.21) 0.0838 (3.14) 
Skilled manual occupation 0.0379 (1.58) 0.0195 (0.37) 0.0460 (1.68) 
Partly skilled occupation -0.0024 (0.10) -0.0062 (0.12) 0.0013 (0.05) 
       
Highest Educational Qual.       
Higher degree 0.0870 (3.17) 0.4330 (2.12) 0.1091 (2.77) 
First degree 0.1583 (9.22) 0.4451 (2.80) 0.1975 (8.53) 
Teaching qf. 0.2181 (8.83) 0.3626 (2.60) 0.2751 (9.30) 
Other higher qf. 0.1519 (11.0) 0.4580 (4.40) 0.1903 (10.1) 
Nursing qf 0.0705 (2.42) 0.3974 (2.83) 0.0933 (2.25) 
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GCE A levels 0.0701 (4.64) 0.3991 (3.68) 0.0898 (4.41) 
GCE O levels or equivalent 0.0365 (2.85) 0.4004 (3.88) 0.0446 (2.79) 
Commercial qf / No O 
levels 0.0153 (0.66) 0.2896 (1.27) 0.0134 (0.45) 
CSE Grade 2-5 -0.0073 (0.36) 0.3938 (1.99) -0.0112 (0.49) 
Apprenticeship 0.0439 (1.36) 0.1531 (0.46) 0.0625 (1.86) 
Other qualifications -0.0937 (2.03) 0.4297 (3.98) -0.1137 (3.83) 
Characteristics of current 
job/employer       
Private Sector -0.0545 (3.86) -0.0542 (1.50) -0.0691 (3.92) 
Permanent position 0.0535 (2.81) 0.0589 (1.73) 0.0653 (2.92) 
       
Working Part Time -0.0635 (5.87) -0.1104 (4.28) -0.0756 (5.60) 
Trade union coverage  0.0497 (5.53) 0.0220 (0.94) 0.0645 (5.63) 
Managerial position 0.0409 (3.47) 0.0465 (1.91) 0.0510 (3.45) 
Supervisor/foreman 0.0360 (3.48) 0.0199 (1.07) 0.0458 (3.67) 
Size of employing 
organization (manpower)       
More than 25 / 50 to 99 
(small) 0.0107 (0.94) 0.0696 (3.23) 0.0101 (0.76) 
100 to 499 (medium) 0.0218 (2.29) 0.0575 (2.56) 0.0236 (1.98) 
500 or more (large) 0.0496 (4.50) 0.0637 (2.50) 0.0585 (4.14) 
       
Intercept 0.0737 (1.07)   0.1004 (1.15) 
AR(1) -5.59  -30.25  -33.37  
AR(2) 10.17  2.04  2.01  
       
Sargan    17.42  37.16  

Hansen    15.75  35.02  
Degrees of freedom    14  19  
NT 14647  11563  14647  
       
Pred. Prob.  0.6600  0.5001  0.6613  
Pred. Prob.  0.7611  0.5046  0.7074  
APE:  0.1011  0.0045  0.0461  
PPR:  1.1531  1.0089  1.0697  
       
 

 


