Maximum Likelihood

Maximum Likelihood Estimation

Intuition

e As well as least squares there are other forms of
estimation procedure: two most popular alternative
estimation methods in econometrics are method of
maximum likelihood and method of moments.

e Imagine two possible outcomes, 1 and 0 where the
probablility of obtaining 1 is 7w and the probability of 0
is (1 —m).

e Take a random sample of values of size n. Suppose that
n = 5 and that the sample is
(y1 =1Lyo=1,y3 =1,y4 = 1,y5 = 1). What is the
most likely value of pi to have generated this sample?



e Take another random sample of values of size 5,
(yl = 0,y2 = 1,y3 = ].,y4 = 0,y5 = ].) What is the
most likely value of pi to have generated this sample?

e The intuition behind these simple questions is the
intuition behind maximum likelihood, i.e. what is the
most likely value of the parameter to have generated the
observed sample.



Simple Example: take 1

e In the previous example the sample is
(y1 =0,y2 =1,y3 = 1,y4 = 0,y5 = 1). We need to work
out the most likely m to have generated this data.

e The probability of this sample being generated given

our assumptions is:
l—-m)-m-m-(1—m)-7

e Suppose that m was 0.1, then the probability of

obtaining our sample in a random experiment would be:
(1-0.1)-0.1-0.1-(1—0.1)-0.1 = 0.00081
e However, if 7 was 0.2, this probability would be:
(1-0.2)-0.2-0.2-(1—0.2)-0.2 = 0.00512

Thus, it is more likely, given our sample, that 7 is 0.2
than 0.1.



e Continuing this for all values of 7 gives:

Value of x | Prob of obtaining sample
0 0

0.1 0.0008
0.2 0.005
0.3 0.13
0.4 0.023
0.5 0.03
0.6 0.035
0.7 0.03
0.8 0.02
0.9 0.007
1 0

e Thus the maximum likelihood estimate of 7 is 0.6.



e We can plot this:

0.6



Simple Example: take 2

e In the previous example the sample is
(y1 =0,y2 =1,y3 = 1,y4 = 0,y5 = 1). We need to work
out the most likely m to have generated this data.
Consider the sample one by one. The probability of the
first data point, y; = 0, occuring is (1 — 7).

e One way to see this is that the probability of obtaining
any value, X, is given by

(1 — 7T)(1_X)

Inserting X = 1 into this formula gives the result 7.
You can think of this formula as the density function
for the distribution represented in this example.



e Now consider data point yo = 1. Inserting this into the
formula gives (1 — 7). We can continue for each data
point in our sample and work out the probability of

each value from the density function.

e We can then work out the joint density of the sample
by multiplying all of these values together. This is the
probablity that our sample would arise in any random
experiment. In our case, we have:

<7Ty1(1 _ ﬂ-)(l—yl)> . (7ry2(1 _ ﬂ-)(l—y2)> .



e Thus we have:
(1 —7)?

as our joint density function for our sample. We now
simply find the 7 that will maximise this function. We
can do this by tabulating/plotting or by differentiating
with respect to m and finding the stationary point.

e Tabulation gives:

Value of z | n3(1 — 7)?
0 0

0.1 0.0008
0.2 0.005
0.3 0.13
04 0.023
0.5 0.03
0.6 0.035
0.7 0.03
0.8 0.02
0.9 0.007
1 0




ML Estimation of the normal linear model

e We want to estimate o and [ in:
Yt = o+ Bry + uy

where the u; are assumed to be normally distributed.
We have a sample of size n of y; and x;. It is easier to
think of this as:

U =Yg — o — By
which is now a normally distributed variable.

e We need to find the o and S that are most likely to
have generated this sample.

e The density function of each of the normally distributed

flus) = (27rla2)

Ut 1S

N[

- ]




This may be written as:

3
flys — o — Bry) = <27r102) exrp [—%(yt — Q= 5%)2
However, we have a sample of size n so in parallel with
our earlier example, we need to find the joint density
and then maximise it. To do this we need to multiply
the individual density functions for each observation
together as we did before. This gives:

VAT 1 )
L= tl;[l (2mg> exp [_ﬁ(yt —a — )
This is the likelihood function for the sample.

To maximise this, it is convenient to take logs (convince
yourselves that you know why). This gives (on
simplification):

I 2
log L = —g log 2m — gloga2 — 2y 20;2 Bz)
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e We need to choose the o and § that maximise this
log-likelihood function. Notice that only the final term
contains a and [ so the other terms will drop out of the
differentiation. Thus, finding the ML estimates is the

same as maximising the final term, or minimising:

3 (y: — a — By)
202
e Note finally that this will give the same estimators as
the linear OLS regression model. Thus in the case of
the linear model, OLS and ML estimates of o and (3 are

equivalent.

e However, the ML estimate of 02 in not the same as the
OLS estimate. To see this, we maximise the
log-likelihood with respect to o.
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e Differentiating gives:

OlogL  n N S (ys — a — Bxy)?

oo o o2

Setting equal to zero, we get the estimator for o2,

52 _ 2 —a— B,)? _ S @3

n n

This is not the same as:

6-(2)Ls - E—/&%
n—k
where k is the number of regressors. In fact, the ML
estimator of the variance is biased but is asymptotically
unbiased. As n — 00, n — k and n become equivalent so
the estimators are the same.
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Logit /Probit Models

e A class of models which are typically estimated using
ML methods are limited dependent variable models.
Often these are models in which the dependent variable
only takes on the values 1 and 0. Examples are trade
union membership, voting, smoking.

e OLS methods are not advised because there will be
heteroskedasticity and the predictions will often lead to
predicted values of y which do not make sense. (See
Carter Hill et al pp. 369-370.

e Recall from above that for a random variable, y, which
takes the value 1 or 0, the density function is:

fly)=m¥(1—m)'"Y y=0,1

Logit and probit models allow us to estimate the

probability 7 in various ways.
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e Recall that the expected value of a variable is equal to
the (distributed) sum of values multiplied by
probabilities. In this case:

Ey)=0-1-mm)+1-w=mx

e We break the dependent variable into a bit that can be
explained and a part that cannot. The above is the
explained part. In the logit model, we assume that this
explained part is related to the regressors in a
non-linear way using a function known as the logistic
function.

E(y) = F(a + Bz)

where F' is the logistic function:

1

=5

e This function ensures that the predictions in this model

are between 1 and 0 which is what we require for a
probablity model.

14



e How can we interpret the results from such an
estimation. In general, we want to know the increase in
probability resulting from a particular regressor being
present (e.g. does being male increase the probability of
being a trade union member? If so by how much?)

e Thus we are interested in the derivative:

dE(y)
dx

where x is some regressor.

e Since, E(y) = F(a + Bx), we need to use the chain rule

of differentiation:

dEd—S’) = F'(a + pz)b

which gives:

dE(y) 6—(a—|—6x)

dx (14 e (@’

The first term here is reported in Microfit as the ‘factor

for calculation of marginal effects’
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LM, Wald and LR testing

These tests, typically thought of as large sample tests
are motivated by the ML procedure. They are general
testing methods applicable in a much wider range of
cicumstances than tests such as the F-test (e.g

nonlinear restrictions).

Recall that when testing restrictions, we have an

unrestricted model and a restricted model.

Take the simple case where we want to test one
restriction: 8 = .

The unrestricted ML estimate of 8 (call it Sasr) is the
one formed by maximising the log-likelihood function.
The restricted value of B is By. (Note that the
unrestricted value will always be bigger than or equal to
the restricted estimate. Why?)

The LM test is based on the restricted model. The idea
begind the test is that the slope of the log-likelihood
will be zero at the (unrestricted) maximum. Thus if the
restrictions are valid, Sysr, will be ‘close’ to 8y and the
slope at the restricted estimate will also be close to zero.
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e We can see this in a diagram:
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e Thus, the LM test takes the slope of the log-likelihood
at the restricted estimate, squares it and divides it by
(the negative of the expectation of) the second
derivative of the log-likelihood (a measure of curvature
of the log-likelihood also known as the information
matriz). Thus the general form for an LM test is:

dL\> 1
LM = (%> PL]dp?

which can be shown to be (asymptotically) chi-square
distributed with r degrees of freedom (in this case
r=1).

e Note that since we are comparing the slope to zero, we
only need to estimate the restricted model to use an
LM test. This is one of the reasons why an LM test can
often be useful. You only need to estimate the simpler
of the two models.
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e The Wald test is very similar to the LM. It tests the
distance between 8y and Bsr.. It also uses the expected
curvature as a divisor. The test is:

1
W = (50 - BML)2d2L—/dB2

This test is also (asymptotically) distributed as x?(r).
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e Note that the W test requires estimation of the
unrestricted model only. We know the restricted value
Bo so we don’t need to estimate the restricted model to

find it.
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e Finally, the LR test looks at the difference in the values
of the log-liklihoods at the restricted and the
unrestricted estimates. It thus requires estimation of
both models.
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e The LR test is formed using the following:

2(logL(Barr) — logL(Bo))

It has the same (asymptotic) distribution as the other
two tests above.
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