Least Squares - 2 variable case

e A linear relationship is expected to exist between
variables x and v,

yi=a+px;, 1=1...n

(e.g. consumption and income).
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e We are looking to find estimates of the slope, B , and the
intercept, &, which minimise the the sum of squared
residuals (RSS or > (y; — 4)?). i.e. minimise the (sum
of) unexplained deviations from the fitted line.

e The ezxplained sum of squares (ESS) is the sum of the
distances (y; — 9).

e The total sum of squares (TSS) is the sum of the ESS

and RSS.
Yy




Method of Least Squares
e The theoretical relationship between y and x is
y=a+ Bx+ u.
e The estimated relationship is y = & + Baz + .

e Note that u are called disturbances and that u are
known as residuals. That is, residuals result from the
estimation procedure but disturbances are theoretical.

e To estimate & and 3 we need to minimise the sum of

squared residuals, ie:

min ) af =) (y; — & — Ba;)’

e This requires differentiating with respect to, in turn, &
and 3 and finding stationary points.



The results of this minimisation give the normal

equations:
Yy o= a+p) z

Zwiyi = &Zazi +BZ:1:3
which we can solve to find & and B
Solving these equations gives the estimators:

6 = y— Bz
2. —)(yi — 9)

2. (i — T)*

It is very important to realise that & and B are random

05

variables, and as such have an expectation and variance.

Appreciate the difference between an estimator and an
estimate. The formulas above are general estimators
which will give particular OLS estimates for a set of
data.



The assumptions of classical OLS

e To do inference (assess adequacy) on the regression
model, we need to make certain assumptions. The

classical assumptions are:

— u; are normally distributed.

— u; have mean 0.

— wu; have constant variance. (homoscedasticity)
— Cov(u;,u;) =0 for all ¢, j

— the x; (RHS variables) are not random

e Because, u; are normally distributed, this will imply

that the estimators B and & are normally distributed.



Statistical Properties of OLS Estimators

e We would like our estimators to have as low a variance

as possible — low variance implies higher accuracy.

e We would also like our estimators to be unbiased, that
is, we want the expected value of the estimator to be
equal to the true (theoretical) value.

e Note: In modern econometrics, it is of more concern
that these requirements are met in large samples (as the
sample size grows to infinity).

e Under certain assumptions which were discussed above,
known as the classical assumptions, it can be shown
that the OLS estimators defined above are unbiased
and have the lowest possible variance of any possible
linear unbiased estimators. They are BLUE.



e The assumptions as stated above are:
u; ~ N(0,0%) Vi
Cov(us,uj) = 0 Vi#j
We also require that the z; are not random variables.

e To see the unbiasedness of B .
A > (xi —x)(ys — ¥)
m) - B(=5e )

Then substitute for y; and y and use the fact that

Fu;=0 to get (on rearrangement):
A . Z(xi—:E)(a—xiﬁ—l—ui—(a—ﬁci—l—ﬂi)
56) = B (o — ) )

()




e Similarly for &

E(a) =



Analysis of Variance

e One very basic measure of ‘goodness of fit’ is R?. This
is defined roughly as the proportion of data that is in
the explained part of the regression rather than the
residual (unexplained) part. Thus:

RSS ESS

2
I It
& TSS TSS

e RR? lies between 0 and 1 and indicates the proportion of
the variation in y that has been explained in the

regression.
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e To perform any serious analysis about the adequacy of
the model, we need to find the variances of & and B
We will also need to estimate the variance of the error

term, 2.

e The variance of 5’ .

Vi = p (B i)

e Substitute (as before) for y; with the regression

equation y; = Bx; + u;

o > (B(s x2+<xz—z><u-—a>>_ ’
Vi) = E( (@ — 2)? 5)
S — 2)(ui —a) L\
E(“ > (51 - 7)° 5)
(2 — 1) E(u; — )
(w; — )2)?2

0.2

> (zi — 2)?

e As noted earlier, this variance is the lowest possible for

a linear unbiased estimator.
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e Unfortunately, o2 is an unknown parameter and must
be estimated. Since it is the variance of the
disturbances, it makes sense to use the sample variance
of the residuals as an estimator. Thus,

o2

0° = —
n

may be used. However, it can be shown that this is a
biased estimator of ¢? in a small sample. This is
because we have lost the independence in the residuals
required by estimating two other parameters (& and B)
It can be shown that an unbiased estimate of o2 is

s
o

n—2
because we have estimated 2 parameters. Showing that
this is unbiased is not easy, but true.

e We say that we have used up two degrees of freedom in
estimating o and S.
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