Costs and Market

See chapters 9-10 in Mansfield et al

Costs: Introduction

- Cost is complex but important to managerial decision making
- Managerial decisions: pricing output, transfer pricing within firm, cost control, planning...
- So important to look at theory of production in relation to costs and the empirical findings

Costs

- Opportunity cost: an important concept
- Value of other things the resources could have been used for
- Historical cost is different: though important to accountants. Distinguish
 - Explicit costs -ordinary items
 - Implicit costs -costs of resources owned and used
- · Accountants ignore the second

Short run costs

- Short run -capital fixed, labour variable
- Define the firms cost function as cost of producing each level of output
- That is total cost function.
- Can distinguish Total, variable and fixed.
- In Mansfield table produces

Short run costs

• From this can derive:

- Average fixed cost: $\ensuremath{\mathsf{TFC/Q}}$

• Average variable cost: TVC/Q

• Average total cost: TC/Q

• Marginal cost: dTC/dQ

Short run costs

• Consider: $TC = 100 + 50Q - 11Q^2 + Q^3$

 $- \ \, M\,C \ \, = \ \, \delta T\,C\,/\delta Q \ \, = \ \, 5\,0 \ \, - \ \, 2\,2\,Q \ \, + \ \, 3\,\,Q^{\,2}$

 $- \ A \ V \ C \ = \ T \ V \ C \ / \ Q \ = \ 5 \ 0 \ - \ 1 \ 1 \ Q \ + \ Q^{\ 2}$

• MC equals AVC when it is at its lowest as

 $- \ \delta {\rm T} \, C \, / \, \delta \, {\rm Q} \ = \ \text{-} \, 1 \, 1 \ + 2 \, {\rm Q} \ = \ 0 \ s \, o \ {\rm Q} \ = \ 5 \, . \, 5$

• Also MC equals ATC when it is at its lowest

Long run costs

- All inputs are variable
- Consider firm can choose different scales : size of plant and then add same labour
- Can have number of short run average cost
 Curves
- If look at all possible levels of plant and associated costs can get LRAC

Long run costs

- Could get a LRTC curve in a similar way
- Or could derive from the LRAC curve:
 - LRTC=LRAC * Q

Economies of scale

- LRAC curve shows the extent to which larger plants can have cost advantages over smaller ones
- Can work out optimal scale
- Can see if there are economies of scale to be gained
 - -if on declining part of cost curve
- Economies of scale can be important reasons for mergers:
 - · Cruise ships
 - Daimler Chrysler

Estimating cost curves

- Important task is to estimate cost curves for firms or industries
- Need choose functional form. Approx
 - Assume SRTC linear function of output
 - So MC constant in relevant range; inappropriate for long range
 - Assume total cost quadratic or cubic
- Taking different TC functions: linear quadratic and cubic gives different MC curves

Estimating cost functions

- Regression analysis: Time series; cross section; panel data
- Engineering data
- Problems
 - Accounting data deficient in time period, allocation of overheads, treatment of depreciation, historic cost
 - Cross section: regression fallacy, ie observed costs not equal to minimum costs
 - Engineering data: arbitrariness of allocating joint costs in multiproduct firms; additivity.

Estimation steps

- Definition of costs: relation to opportunity cost
- Deflating to real
- Relating cost to output
- · Matching time periods: cost and output data
- 'Ceteris paribus' reasonable? -assuming fixed product, plant and technology
- Number of observations adequate?

Examples

- Mansfield gives some examples:
 - Cross section
 - Time series

Long run cost estimation

- Same regression analysis can be used
- · Long run: cross section data more sensible
- Problems
 - Accounting methods differ
 - Input prices may differ
 - Data may not be efficient levels production
- Many studies undertaken;
 - show significant economies of scale at low levels declining
 - But L shaped rather than U

Long run costs

- Minimum efficient scale: smallest output at which LRAC cost curve is at minimum
- Important as if not at it can have competitive disadvantage
- Can estimate
- Or use engineering analysis

Minimum efficient scale

- Or use survivor technique (Stigler):
 - Industry size class outputs at various times
 - If share falls over time, class considered relatively inefficient
 - Suggests below mes
 - Plot average cost by industry share
 - Example: doesn't tell extent of differentials

Costs

- Different types of plant: can have different flexibilities -combine
- Economies of scope possible:
- Production or cost advantages from increasing number of products produced
 - Use same production facilities
 - Use by products
- Can be very important in some industries

Other uses

- Break even analysis:
 - assume constant AVC so TC linear and constant MC = AVC
 - Plot total revenue and total cost and will see break even point
- Consider degree of operating leverage in comparing plants:
 - Measure profit sensitivity to sales
 - Useful measue of difference across plants
- Example of break even:

Uses

- · Profit contribution analysis
 - Difference between total revenue and total variable cost
 - Per unit its difference between prices and AVC
 - Tells what's available to pay off fixed costs and then what's profit

Market Structure

- \bullet Market: firms and individuals –buy and sell
- Important social and legal preconditions
- Different structures depending on nature of good, agents and market conditions
- Extremes perfect competition and monopoly
- Important for managers to understand nature of market

Perfect competition

- Nature of demand and supply
- · Many suppliers and consumers
- No market power
- Equilibrium price
- Shifting demand and supply

PC firm output

- Can produce as much as it chooses
- · So how to choose
- Maximise profit
- MC = MR = P
- Normal profits

Consumer and Producer Surplus

- Consumer surplus: difference between price pay and price willing to pay
- Producer surplus: difference between pice received and that willing to receive

Long run equilibrium

- Economic profits not accounting profits
- Produce if make normal profits
- Can change capital in LR
- Competition to lowest point LRAC

Long run industry adjustment

- Constant cost industry
- Increasing cost industry

Resource allocation

- Important pointers to real world phenomena
- Short run equilibrium after change in demand
- Long run market adjustment: when capital variable
- Transfers of resources between commodities
- Walras and Marshall

Monopoly

- Downward sloping demand curve
- Maximise profits
- MC = MR

Monopoly

- $Max \Pi = TR TC$
- $d \Pi/dQ = dTR/dq dTC/dQ = 0$
- $\bullet \quad d\,T\,R/\,d\,Q \ \ d\,T\,C/\,d\,Q$
- M R = M C
- Now for monopolist $M\,R = M\,C = P \, \left(1 + 1/\eta\right)$ where η is the price elasticity of demand
- $P = M C / (1 + 1/\eta)$
- As $\eta\!<\!0$ $(1\!+\!1/\eta)\!<\!1$ then price is higher than $M\,C$
- Monopoly leads to higher price and lower output than $\ensuremath{\text{PC}}$

In Between

- Two-part tariffs
- Bundling
- Franchising
- Patents

Monopolistic Competition

- Perfect competition but product differentiation
- Some monopoly power
- Downward sloping demand curve

Advertising

- With product differentiation comes advertising
- How much to spend?

